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The Shvets method [1] is used to study the ignition of a reacting gas
from a heated catalytic surface in the presence of conductive and con-
vective heat transfer from that heated surface.

Ribo and Valentin [2] observed experimentally that
there exist two ignition regimesfor a catalytic surface.
At a comparatively low temperature for the cat-
alytic surface (for a reacting system hydrogen-air-
platinum T; =< 480° K, we have heterogeneous com-
bustion in the molecules of the reacting substance.
At a high temperature for the heated surface (T, =
= 900° for the same system [2]), a homogeneous reac-
tion is essential. Spalding [3] provided a detailed re-
view of the literature on the transfer of heat in chem-
ically reacting gases and indicated the possible practical
applications.

We will study theoretically the ignition of a cataly-
tic surface for the case of a homogeneous reaction of
the first order.

For conductive heat transfer from a heated surface
the problem reduces mathematically to the solution of
the system of equations

a0 06

5 = Py —cexph, (1)
% dc
P =L (? -+ ycexp 6) (2)

having the boundary and initial conditions

8(0, 1) =0, 0(z, 0) =0(, 1) = — 0,
. c(z, 0) =c¢(o0, 7)=1. (3)

In deriving Eqgs. (1) and (2) we used the Frank-Kam-~
enetskii [4] approximation for exp(—E/RT), while in
the derivation of the boundary and initial conditions
(3) we assumed that the concentration of the reagent
at the heated surface instantaneously drops to zero.
This is explained by the fact that the rate of the chem-
ical reaction at the catalytic surface is very great [5]
and is in agreement with the experimental data of [2].
It was also assumed that the thermophysical coeffi~
cients A = AT /Ty, and p = pyTy/T and the Lewis-
Semenov number does not vary with a change in tem-
perature, and it was assumed tzhat the transformation

of the independent variable 7 - £ dz;, which is anal-
Po
0
ogous to the Dorodnitsyn transformation [6].

Since the rate of the chemical reaction is an expo-
nential function of temperature, the reaction takes
place within narrow temperature and diffusion bound -~
ary layers. Having introduced the thicknesses of the

temperature and diffusion boundary layers, we bring
the boundary and initial conditions (3) to the form

0(0,7) =0, 8(Ay, T) =—8),c(0,7) =0,
c(A,, 1) =1, A, (0)=A,(0) == 0. (4)

We use the Shvets method [1] to solve the boundary
problem (1), (2), and (4). As first approximations for
the temperature and concentration we obtain

(5)

0, = —06,z/A, ¢, = 2/A,.

Substituting (5) into the right-hand parts of (1) and (2)
and integrating the result of the substitution twice with
respect to z and with consideration of (4), we obtain
the second approximations
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For simplicity, subsequently we will drop the terms
containing the factor € = exp —6, since when 6 > 1
the quantity ¢ < 1.

Having satisfied (6) and (7) in terms of the Shvets
conditions [1], we derive the differential equations for
the determination of the quantities A; and Ay

dA,; _34 6A7

A ,
odr BEA,
dA, 6y LA?

LA 2 —34 2L 8

*dx B3, ®

Then, by means of the method of perturbations [7] for
moderate values of T we have
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In deriving (9) we took into consideration the initial
conditions (4) and dropped all powers of the perturba-
tions above the first. We note that the first terms in
expressions (9) yield values for the thicknesses of the
temperature and diffusion boundary layers of a non-
reacting gas that are exact within the scope of the sec-
ond approximation according to the Shvets method.
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From the Zel'dovich condition [8] d6/dz} ;= = 0,
which is an approximate condition of ignition, we find
the heating time

8 3
1"’:“41_‘?/2 [l+ K(I'F‘YGOL)] (10)

We see from expressions (6), (7), and (9) that when
0 < T = 7,, the thicknesses of the boundary layers and
the profiles of the temperature and concentration dif-
fer little from the corresponding quantities found with-
out consideration of the liberation of heat in the homo-
geneous reaction. Since the pronounced convergence
of the successive approximations of the Shvets meth-
od for an extensive class of linear and self-similar
problems is shown in{1] and demonstrated theoretically
by Gandin [9], in view of the smallness of the pertur-
bations due to the chemical reaction it is poassible to
hold that the convergence of the Shvets method applies
also to our case, at least when 0 < 7 = Ty. This is also
valid for two other problems, considered below.

By means of (8) and (10) we find the thickness of the
heated layer
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The quantity of heat transferred by the heated plate is
equal to
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We see from formulas (10), (31), and (12) that with an
increasing Lewis-Semenov number the heating time
diminishes as L7Y/2 yhile Ay and Q4 diminish as
L7Y8,

Thus, with all other conditions equal, the ignition
of the reacting gas is all the easier, the larger the co-
efficient of heat diffusion in comparison with the coef-
ficient D of concentrated diffusion.

On ignition of a noncatalytic surface in the absence
of complete reagent burning, with the Shvets method
[1] we easily find

9
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Formulas (13) and (14) follow from (7) and (8) of [10]
when e = 1. Comparison of formulas (13)—(15) with
the corresponding formulas derived with a computer
[11, 12], has demonstrated that they differ little from
the sxact. In particular, expression (13) for 6, = 10
vields numerical data virtually coincident. when 8 = 0
with the numerical data of reference [12], whose
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error does not exceed 8%. Consequently, the error in
(13) is approximately equal to 8%, which coincides, as
wasg to be expected from the above-cited considerations
regarding convergence of the Shvets method, with the
accuracy of the second approximation for the tempera-
ture of the correapording linear boundary problem (1].
Formulas (13)—(15) retain their accuracy even in the
presence of complete combustion, if v, <1, since in
this case, according to the results of [12], the com-~
plete combustion has little effect on the characteris-
ties of ignition.

Having compared (10}—(12) with (13)—(15) when L =
=1 and v§, <1, for the ignition of the catalytic sur-
face, we find that 74 exceeds the heating time (13) by a
factor of 6;, while Ay, and Q4 are greater than the thick-
ness of the heated layer (14) and the quantity of trans-
ferred heat (15) by a factor of ()%

Thus, to derive an identical heating time, all other
conditions being equal, we must heat the catalytic sur-
face to a higher temperature and transfer a greater
quantity of heat from the heated surface; i. €., the cat-
alytic surface makes ignition of the reacting gas more
difficult. This fact is in agreement with experimental
data [13] and the qualitative considerations of {5l

In convective heat transfer from the heated cata-
Iytic surface we find that the problem of the ignition
of the reacting gas reduces to the solution of a system
of equations from hydromechanics, heat conduction and
diffusion:

dy, (16)
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In deriving system (16)—(18) we assumed that u =
= UT/Ty, P=pyTy/T and A = \(T/Ty, and as in [10] we
used the Dorodnitsyn transformation [6]. As in [10],
having introduced the thickness of the hydrodynamic,
temperature, and diffusion boundary layers, we write
the boundary and initial conditions for system (16)—(18)
in the form:

u(x, 0)=0, u(x, A)=1,
0(x, 0)=0, 6(x, Aj)=—0,
c{x, 0)=0, c(x, A)=1,
A@QY= H: (0) = A (0} = 0. (19)

To solve the boundary problem (16)—(19) we use the
modified Shvets method {14]. The hydrodynamic part o
of the problem has been solved in [14], where A =
= 4(x)1/2 was found, as was the velocity profile u(x, y).
Let us solve the equation of heat conduction and diffu-
sion in 2 manner analogous to the way this was done in
[10] and as done above for the case of conductive heat
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transfer. Dropping the intermediate calculations, we
write the final results:

0, =

Pr g, 4* (A*‘ dA, L)y
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The distance x = x,, at which the approximate Zel'do-
vich [8] ignition condition is satisfied, is equal to

1. nd
%, = Pr Sc—/+ 8} [1_ 8

gt |1~ g Cveb] @)

while the formula for the thickness of the heated layer
4v'x,

has the form
8
Y P — .
Pris [ + 7(390—8)]

We see from formula (24) that, for the nonreacting gas,
when 0 < x =< x, the thickness of the temperature bound-
ary layer differs little, for 6y > 1, from the thickness
of the temperature boundary layer [14]. Comparing x4
for Pr = Sc # 1 and v6, <1, which is the case for many
reacting gases, with formula (20) of [10], we see that,
on ignition of the catalytic surface, xyx isapproximately
greater by a factor of ¢, than the quantity xx deter-
mined there. So great a quantitative effect cannot be
explained by the complete combustion of the reagent.
Comparison of (22) of [10] with the numerical data de-
rived by means of the computer [15] demonstrated that
even in a reaction of the second order the complete
combustion of the reagent increases the magnitude of
X4 only by 30%. The factor responsible for the con-
siderable exaggeration of x, is the fact that the cata-
lytic surface serves as a sinkfor the reacting substance.

In conclusion we note that there are no fundamen-
tal difficulties in determining x, or the other ignition
characteristics by the modified Shvets method [14] for
any surfaces of rotation; however, the formulas and
calculations are more cumbersome.

Let us examine the ignition of a reacting gas on a
heated catalytic surface in the case of free convection.
Physically this problem is formulated as in [10] for the
ignition of a reacting gas on a noncatalytic surface. As
in [10], we also assume that the thermophysical coef-
ficients are constant, and that in the hydrodynamic
sense the reacting gas is incompressible. Mathemati-
cally, the problem reduces to the solution of the sys-
tem of equations:

Al* =‘-Al (x*)= (24)
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Having introduced the thicknesses of the thermal and
diffusion boundary layers, we write the boundary and
initial conditions in the form:

U 0)=UE A)=0, 8, 0)=0,
B(E A)=—0, c(& 0)=0, c(& A)=1,
A (0) = 4, (0) = 0. (28)

We solve the boundary problem (25)—(28) by the Shvets

method [1]. Omitting the intermediate calculations,
we proceed at once to write the final results:
Préjv [ mP 1 1y dA,
8, = ; — oo —
8A; 30AT 5A; 3 dE
anl | 841 Bon
2— {24 exp |-— G, (29
+Azeg[ (T Al) p( Al)]+ (@
4
Gy = — Sc 8,1 %
4A,
o[ (A;‘ dA, AT dA )_
457, dg 4 dt
—.n da, 1
A, dt T 9"
Xf( A d, 1 dA )]_ ay Sc A
A, dE 2 dg Pra,6
x[?——(2+ ﬂ’i‘—)exp(—ﬂ‘—>]+Hn, (30)
A AT
Ay = @BV + 0,812 4+ agE + ...,
Ay = BiEVE 4 BB+ BB + (31)
256 0 '
= g (32)

ataf (116, — 32)*

Unlike the previous cases, here the differential
equations for the determination of Aj and A, are solved
by the method of expansion in series, as a result of

960 !/
which we found a, = (——) a, =f, =0, and
11Pr8,
g = jZO_a , where B; is defined by the equation
11P .65

(33)

b= [%e“ ( 2?1;1 - ;T s )]—

This equation can be solved by the method of iterations
[16]. When Pr = Sc from (33) we obtain 8; = ;. The
first terms in (31) yield values of A; and Ay for non-
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reacting gases, within the framework of the second
approximation of Shvets.

In deriving the formulas for &,, where &, is the dis-
tance from the edge of the plate at which the Zel'do-
vich [8] ignition condition is initially satisfied, we left
only the principal term of the expansion of £, in pow-
ers of 60'1. Knowing &4, we easily find that when 0 <
< & = £, the thicknesses Ay and Ay differ little from
the corresponding quantities for nonreacting gases.

If we select the maximum velocity U = Upm of the
liquid particle as the characteristic velocity, then,
knowing £,, we can easily find the minimum time of
thermal contact between the reacting gas and the heated
surface—the time required for the ignition:

80

Ee
a a8
Pr § U ( ™ 3360)' (34)

The quantity Uy = A %/9(3)1/2 was found as a maxi-
mum of the function Uy(£,7) determined from the sec-
ond of the formulas of (30) in [10], while the thickness
of the thermal boundary layer was determined from
the first of the formulas of (31). For the ignition of a
noncatalytic surface, by means of formulas (30) and
{36) of [10] we obtain

2881/“9051‘
IIPI’CL{

Ty =

_ 33V3e ( 16 .
W= g~ I =)
~03/392( Ilfe> (35)

Comparison of (10) and (35) demonstrates that 7,
for free convection is greater than 7, for conductive
heat transfer by a factor of approximately two, which
is apparently explained by the lower rate of heat trans-
fer from the heated surface to the reacting gas in the
case of free convection.

Comparing (34) with formula (35) for Pr = Sc = 1
and 9, > 1, we see that Ty on ignition of the catalytic
surface, all other conditions being equal, is greater
than the magnitude of (35) by a factor of &;, since from
formula (34) when Pr = Sc = 1 we have 7, = 0.3(3)1/2603.

If instead of the Frank-Kamenetskii approximation
[4] for exp(—E/RT) we use the more exact approxima-
tion

exp ~expd—plexp9 4 ..., (38)

8
14pb
valid when § << 1, the principal terms in formulas (10),
(23), and (34) increase by a factor of (1 — 68)~!, while
the principal terms in formulas (11), (12), and (24) in-
crease by a factor of (1 — 6,6)-1 2, which for small g
is insignificant. With the Shvets method we can find
the characteristics of ignition as well for the exact
function exp(—E/RT) in the same manner, for example,
as formulas (21) and (22) of [10] were found; however,
in this case they are rather cumbersome in form.

In conclusion we note that the formulas which we
found for the characteristics of ignition, in view of the
assumptions adopted in their derivation, are valid
only for moderate values of L, Pr, and Sc and when
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L<1, Pr«1, S¢ <lor L>»1, Pr>»1, Sc>1, they
lose significance.

NOTATION

= (T - T,) E/RT% is the dimensionless tempera~
ture; E is the actlvatlon energy; R is the universal gas
constant; T, is the temperature of the heated catalytic
surface; 8y = (T, — Ty) E/RT%; T, is the initial tem-
perature and the temperature of the reactmg liquid out-

side of the boundary layer; «= % ‘/Re j_pf’_ dy;
i}

- Gko o E T E 2 \3
- oo = = = TYE w2
’ zl/ Ao RT? ex?( ch)' SRR RIIEST

1=y, (g Bo RTYE ', are dimensionless coordinates; 1 is
a characteristic dimension; X3, yi, z are dimensional
coordinates; kg is a pre-exponent; Ay, Hy, and p are
the coefficients of thermal conduetivity, viscosity, and
density for T = Ty; Re = uwl/v is the Reynolds num-
ber; u,, is the unperturbed velocity of the flow; v is the
kinematic viscosity; T = qlgEt/cp RT exp(~E/RT) is
the dimensionless time; t is tlme q is the thermal ef-
fect of the reaction; 7 is the heating time; A, Ay, and
A, arethe thicknesses of the hydrodynamic, temperature,
and diffusion boundary layers; Pr = v/% is the Prandtl
number; . is the coefficient of thermal diffusivity;

L =%/D is the Lewis-Semenov number; D is the coef-
ficient of concentrated diffusion; 8 = RTg/E: v =

=c RTC/qE is a dimensionless parameter, °p is the
heat capacity at constant pressure Sc = v/D is the
Schmidt number; a = qEkycy/ARTZ (EvE/gByRTE) 2/3
exp(—E/RT.) is a dimensionless parameter; o =

= quocolP/RTcuwc exp(— E/R ) is a dimensionless
parameter; U = vg( n/gﬁovRTc) ﬁ; U = Vg/Ue: Vx is the
longitudinal component of flow velocity; 8y is the co-
efficient of volumetric expansion; ¢y is the initial con-
centration;

3
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B (14 ks e e Y
A, 6 d= 838, /'
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22y Sc 4
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o _go_( 2aA? Prd, AT 44, }
T oA 8,84 48 dr
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